Home
:
Book details
:
Book description
Description of
Implementing MLOps in the Enterprise A Production-First Approach
1098136543 epub With demand for scaling, real-time access, and other capabilities, businesses need to consider building operational machine learning pipelines. This practical guide helps your company bring data science to life for different real-world MLOps scenarios. Senior data scientists, MLOps engineers, and machine learning engineers will learn how to tackle challenges that prevent many businesses from moving ML models to production.Authors Yaron Haviv and Noah Gift take a production-first approach. Rather than beginning with the ML model, you'll learn how to design a continuous operational pipeline, while making sure that various components and practices can map into it. By automating as many components as possible, and making the process fast and repeatable, your pipeline can scale to match your organization's needs.You'll learn how to provide rapid business value while answering dynamic MLOps requirements. This book will help you:Learn the MLOps process, including its technological and business valueBuild and structure effective MLOps pipelinesEfficiently scale MLOps across your organizationExplore common MLOps use casesBuild MLOps pipelines for hybrid deployments, real-time predictions, and composite AIBuild production applications with LLMs and Generative AI, while reducing risks, increasing the efficiency, and fine tuning modelsLearn how to prepare for and adapt to the future of MLOpsEffectively use pre-trained models like HuggingFace and OpenAI to complement your MLOps strategy