Home
:
Book details
:
Book description
Description of
Analytic Partial Differential Equations (Grundlehren der mathematischen Wissenschaften, 359)
This book provides a coherent, self-contained introduction to central topics of Analytic Partial Differential Equations in the natural geometric setting. The main themes are the analysis in phase-space of analytic PDEs and the FourierBrosIagolnitzer (FBI) transform of distributions and hyperfunctions, with application to existence and regularity questions. The book begins by establishing the fundamental properties of analytic partial differential equations, starting with the CauchyKovalevskaya theorem, before presenting an integrated overview of the approach to hyperfunctions via analytic functionals, first in Euclidean space and, once the geometric background has been laid out, on analytic manifolds. Further topics include the proof of the Lojaciewicz inequality and the division of distributions by analytic functions, a detailed description of the Frobenius and Nagano foliations, and the HamiltonJacobi solutions of involutive systems of eikonal equations. The reader then enters the realm of microlocal analysis, through pseudodifferential calculus, introduced at a basic level, followed by Fourier integral operators, including those with complex phase-functions ( Read more